If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4=196
We move all terms to the left:
3x^2-4-(196)=0
We add all the numbers together, and all the variables
3x^2-200=0
a = 3; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·3·(-200)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{6}}{2*3}=\frac{0-20\sqrt{6}}{6} =-\frac{20\sqrt{6}}{6} =-\frac{10\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{6}}{2*3}=\frac{0+20\sqrt{6}}{6} =\frac{20\sqrt{6}}{6} =\frac{10\sqrt{6}}{3} $
| 3x+4-x=16-2x | | (7-z)(2z+1)=0 | | 2r2=50 | | 90=(4x-10)+(2x-20) | | 3x-12=9x+6 | | -7=4w+1 | | -4=3u+2 | | y=35000(1.024)4 | | 5x-(x/3)=2 | | 15−42÷b=8 | | 0.5y-0.2y=60 | | 41+p=0 | | -6=4+u/2 | | 41=5y+6 | | (3x+2)(2x-7)=180 | | 3n-12n=30 | | 24+6m+10=9+10m | | (180-x*x)+(150-2x)=180 | | 12+3y=-6+y | | 2-2(4x-2)=-6 | | 4+3y=-6+y | | 5⋅10x=30 | | 5⋅10x= 30 | | 5⋅10x= 30 | | 5x+69=2x^2-14x-19 | | -2+-3x=3+x | | (4x+12)^2=27 | | x÷(-2/3)=3/10 | | 2x^-24x+25=0 | | 2x-24x+25=0 | | 0.40×60=x | | (x-1)(x-2)(x+3)(x+4)(x+5)=16 |